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A free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling
the PEMFC as a 20 cm × 20 cm composite plate structure. The membrane, gas diffusion electrodes, and
bi-polar plates are modelled as composite material plies. Energy equations are derived based on Mindlin’s
plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element
modelling. A parametric study is conducted to investigate how the natural frequency varies as a function
of thickness, Young’s modulus, and density for each component layer. It is observed that increasing the
ree vibrations
olymer electrolyte membrane fuel cell
EMFC
atural frequency
ode shapes

omposite layers

thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a
25% increase in thickness resulting in a 17% increase in the natural frequency. The mode shapes of the
PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced
by the single cell under vibration conditions that should be considered for transportation and stationary
applications. This work provides insight into how the natural frequencies of the PEMFC should be tuned
to avoid high amplitude oscillations by modifying the material and geometric properties of individual

components.

. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) may be sub-
ect to vibrations under dynamic situations found in transportation
pplications as well as stationary applications near heavy traffic
nd rail transport. Passenger vehicles generally experience vibra-
ions in the range of 8–16 Hz due to the unevenness of the road
nd the oscillation of the axel and wheel with the suspension sys-
em [1]. PEMFCs may be employed to power auxiliary devices in
emi-trailers, which typically experience vibrations in the range of
.9–5.8 Hz during highway driving conditions [2]. Buildings near
usy roads are also subject to vibrations due to nearby traffic,
hich cause vibrations between 5 and 25 Hz [3]. When placed in

pplications such as these, the PEMFC may vibrate at an excita-
ion frequency within the band of its natural frequencies and cause
he PEMFC to vibrate in resonance with high amplitude. Therefore,
t is critical to identify the natural frequencies that a PEMFC may
xperience in the context of the excitation frequencies expected
n these applications. Vibrating at resonance frequency can lead

o the initiation and acceleration of defect formation, which may
ltimately result in operational failure. Vibrations may exacerbate
efects such as pinholes, cracks, and delamination, which can result

n fuel crossover, performance degradation, and reduced durabil-

∗ Corresponding author. Tel.: +1 416 946 5031; fax: +1 416 978 7753.
E-mail address: abazylak@mie.utoronto.ca (A. Bazylak).

378-7753/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.10.112
© 2011 Elsevier B.V. All rights reserved.

ity [4,5]. Vibration characteristics are required to understand the
vibration behaviour of PEMFC components such as the membrane,
catalyst layer, gas diffusion layers, and bi-polar plates.

Vibration tests on PEMFC stacks and mechanical non-linear
behaviour modelling with neural networks and finite element mod-
elling has been reported by several authors [6–13]. Rouss et al.
[7] test a fuel cell stack under vibrations to simulate the opera-
tional conditions of an aircraft. They characterize the mechanical
behaviour of the stack by determining the natural frequencies, and
they find that the PEMFC behaves as a multi-body non-linear sys-
tem. Each component of the fuel cell exhibits distinct frequency
responses, in contrast to behaving like a rigid body. In a sepa-
rate work, the authors develop a three-dimensional, multi-input
and multi-output artificial neural network (ANN) model based on
experimental findings from PEMFC vibration tests [8]. They pro-
pose a fuel cell neural network model, which can be used for
monitoring purposes to detect abnormalities in the mechanical
behaviour of a similar fuel cell stack placed under vibrating con-
ditions.

The mechanical non-linear response of a PEMFC is characterized
using acceleration data from vibration experiments by Rouss et al.
[10]. They place accelerometers on the bi-polar plate with and with-

out structural supports and find similarities between the results
from a simple single degree of freedom (SDOF) system and from a
complex multi-physics system based on a library of non-linear sig-
natures. From temporal signals measured with one-dimensional
and three-dimensional accelerometers, they find that the PEMFC

dx.doi.org/10.1016/j.jpowsour.2010.10.112
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:abazylak@mie.utoronto.ca
dx.doi.org/10.1016/j.jpowsour.2010.10.112
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Nomenclature

A cross-section area
ai coefficients of mode shape
Db the material property matrix for bending
Ds the material property matrix for shear
Dij the coefficients of the bending and shear stiffness

matrices
Ek modulus of elasticity of the respective layer
h thickness of the PEMFC
L length of the PEMFC
[K] assembled stiffness matrix
Ke element stiffness matrix
[M] assembled mass matrix
Me element mass matrix
n the number of nodes per element
nc the number of component layers
Ni the shape functions
t time variable
T the kinetic energy
tk thickness of the respective layer
U the strain energy
V the volume of the PEMFC
w displacement in the thickness direction
{w} displacement vectors
{ẅ} acceleration vectors
x longitudinal-direction of the PEMFC
y width-direction of the PEMFC
z thickness-direction of the PEMFC
�b the bending stress tensor
�s the shear stress tensor
εb the bending strain tensor
εs the shear strain tensor
�x rotation about x-axis
�y rotation about y-axis
�k density of the respective layer
˛ shear correction factor
� Eigen value
ωn natural frequency
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�k Poisson’s ratio of the respective layer
�,	 local coordinates

xhibits dry friction behaviour, which they attribute to the con-
act between the bi-polar plates and tie rods. To investigate the
ynamic behaviour of a non-linear mechanical system, Rouss and
haron [11] measure the response of a non-linear mechanical sys-
em subjected to random, shock, and swept sine excitations on a
ibrating platform. They employ these results to validate and train
heir numerical model.

Rajalakshmi et al. [6] subject a PEMFC stack to vibrations, which
nclude random and swept-sine excitations on a vibrating platform
n three axes. Although changes to the mechanical integrity of the
tack are not detected, they find a compression force release at the
olts. Ozgur [14] performs modal analysis with experimental vibra-
ion investigations on an automotive fuel cell stack module in order
o design a mounting bracket. They employ an electro-dynamic
haker test apparatus to identify the appropriate mounting system
nder resonance frequency considerations.

Betournay et al. [12] experimentally investigate the effects of

ining conditions on the performance of a PEMFC. They determine

he effects of shocks and vibrations on the performance of PEMFC
nd the effects of mineral and diesel particulate matter on the phys-
cal reliability/integrity of the fuel cell stack. They also evaluate the
hysical reliability/integrity of the fuel cell stack when mounted
Sources 196 (2011) 5520–5525 5521

over the rear wheel of a mine loader chassis, which applied shocks
and vibrations to the fuel cell.

Privette et al. [15] conduct vibration studies to qualify a PEMFC
against US military vibration and shock standards. PEMFC stack
testing has been recently studied in the framework of a European
Union harmonized fuel cell testing protocol [16], which is com-
prised of 55 European partners. Fuel cell testing protocols include
the application of vibrations and shocks with 6 degrees of freedom
at a frequency of up to 250 Hz.

To the authors’ best knowledge, free vibration analysis using
the finite element method has yet to be performed. In this work,
the finite element model for simulating the PEMFC as a composite
material is presented. Free vibrations are simulated for the compos-
ite, which consists of a membrane, gas diffusion electrodes (GDEs),
and bi-polar plates. A parametric study is conducted to investigate
how the natural frequency varies as a function of thickness, Young’s
modulus, and density for each component layer.

2. Finite element formulations

In this work, the finite element method is employed for the
free vibration analysis of a PEMFC, with degrees of freedom for
the transverse displacement and rotation with respect to the x-
and y-directions. The PEMFC is modelled as a symmetrically lam-
inated composite plate, composed of a membrane, gas diffusion
electrodes (GDEs) and bi-polar plates, which are considered plies
of the composite plate. The GDE is the gas diffusion layer combined
with the catalyst layer. The bi-polar plate is modelled as a solid
graphite layer, without flow fields. Since the PEMFC is modelled
as a composite, interfaces between the layers are not considered
here. For the free vibration analysis of a PEMFC, clamped boundary
conditions are applied to all edges.

Isoparametric shape functions are employed for the plate ele-
ment formulations. The generalized transverse displacement and
rotations are interpolated as follows [17]:

w =
n∑

i=1

Ni(�, 	)Wi (1a)


x =
n∑

i=1

Ni(�, 	)
xi
(1b)


y =
n∑

i=1

Ni(�, 	)
yi
(1c)

where n is the number of nodes per element. Ni(�,	) represents
the shape functions of a bilinear four-node quadrilateral element
in natural coordinates, based on a local coordinate system with
independent variables� and 	. w, 
x and 
y are the transverse dis-
placements in the z-direction, and rotations of the normal to the
mid-plane with respect to the x and y-direction, respectively. wi,

xi

, and 
yi
are the nodal transverse displacements in the z-direction

and the nodal rotation with respect to x-direction and y-direction,
respectively. The shape functions of a 4-node bilinear quadrilateral
element, which are used in the strain–displacement relation of the
energy formulation section, are as follows:

N1(�, 	) = 1
4

(1 − �)(1 − 	) (2a)

N2(�, 	) = 1
4

(1 + �)(1 − 	) (2b)
N3(�, 	) = 1
4

(1 + �)(1 + 	) (2c)

N4(�, 	) = 1
4

(1 − �)(1 + 	) (2d)
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Mindlin’s plate theory [18] is utilized for the energy formulation,
hich incorporates the transverse shear deformation. The funda-
ental assumption is that the plate cross-section remains plane

nd normal to the deformed longitudinal axis before bending, but
oes not necessarily remain normal to the deformed middle plane
f the plate after bending. Taking into account the basic assump-
ions of Mindlin’s plate theory for a PEMFC, the strain energy is
ritten as:

= 1
2

∫
v

�bεbdV + ˛

2

∫
v

�sεsdV (3)

here �b denotes the bending stress field tensor, εb denotes the
ending strain field tensor, �s denotes the transverse shear stress
eld tensor, and εs denotes the transverse shear strain field tensor.
is the volume of the plate, and ˛ is the shear correction factor.

ubscripts b and s denote bending and shear, respectively.
The linear elastic stress–strain relations in bending are defined

or an isotropic material as the following:

b = Dbεb (4)

The material property matrix for bending of a symmetric lami-
ated composite plate is given by [19]:

b =
[

D11 D12 D16
D12 D22 D26
D16 D26 D66

]
(5)

here

11 =
∑nc

k=1

Ek

1 − v2
k

(
tkZ2

k + t3
k

12

)
(6a)

12 =
∑nc

k=1

�kEk

1 − �2
k

(
tkZ2

k + t3
k

12

)
(6b)

22 = D11 (6c)

16 = D26 = 0 (6d)

66 =
∑nc

k=1

�kEk

2(1 − �2
k
)

(
tkZ2

k + t3
k

12

)
(6e)

k denotes Young’s modulus, �k denotes Poisson’s ratio, tk denotes
he thickness of the component layers, and the subscript k denotes
he respective component layer.

The linear elastic stress–strain relationship for shear is defined
or an isotropic material as:

s = Dsεs (7)

The material property matrix for the shear of a symmetric lam-
nated composite plate is given by:

s =
[

D77 0
0 D88

]
(8)

here

77 = D88 =
∑nc

k=1

Ek

1 − �k
tk (9)

The maximum strain energy of the plate is written as:

= 1
2

∫
v

[εb]T [Db][εb]dV + ˛

2

∫
v

[εs]
T [Ds][εs]dV (10)

The kinetic energy for a plate is given by:[ ]

= 1

2

∫
� hẇ2 + h3

12

̇2

x + h3

12

̇2

y dA (11)

here � is the density, h is the thickness of the plate, and A the
ross-sectional area.
Sources 196 (2011) 5520–5525

The total functional energy in the absence of work from external
forces is expressed as:

˘ = U − T (12)

By imposing the stationary condition (∂˘/∂w = 0) to Eq. (12),
the element stiffness matrix, Ke, and mass matrix, Me, are calculated
as follows:

Ke =
∫

A

BT
b DbkBbdA + ˛

∫
A

BT
S DskBsdA (13)

Me =
∫

A

NT

(
nc∑

k=1

�k

[
tk 0 0
0 t3

k
/12 0

0 0 t3
k

/12

])
NdA (14)

By substituting the local coordinates in the element area,
the element stiffness and mass matrices are computed with the
Gauss–Legendre quadrature numerical integration as follows [17]:

Ke =
∫ 1

−1

∫ 1

−1

BT
b DbBb[J]d�d	 + ˛

∫ 1

−1

∫ 1

−1

BT
S DsBs[J]d�d	 (15)

Me =
∫ 1

−1

∫ 1

−1

NT

(
nc∑

k=1

�k

[
tk 0 0
0 t3

k
/12 0

0 0 t3
k

/12

])
N
∣∣J∣∣d�d	 (16)

where
∣∣J∣∣ is the determinant of the Jacobian matrix. After calculat-

ing element stiffness and mass matrices using a numerical program
written in Matlab [20], the matrices are assembled together to form
the overall stiffness and mass matrices for a complete single PEMFC.
These assembled stiffness and mass matrices are used in the equa-
tion of motion, which is discussed in the section below.

3. Solution

The equation of motion for a free vibration of a structure is
written as:

[M]{ẅ} + [K]{w} = 0 (17)

where [M], [K], {w} are the mass matrix, stiffness matrix, and dis-
placement matrices, respectively. To find the natural motion of a
structure, the form of response or solution is assumed as:

{w(t)} = {Z}eiωt (18)

where {Z} is the mode shape (Eigen vector), and ω is the natu-
ral frequency. The general solution is a linear combination of each
mode:

{w(t)} = a1{Z1}eiω1t + a2{Z2}eiω2t + a3{Z3}eiω3t + · · · (19)

where each constant (ai) can be evaluated from the initial condi-
tions. Substituting Eq. (18) into Eq. (17) yields:

([K] − ω2[M]){Z}eiωt = 0 (20)

The above equation has a nontrivial solution if
∣∣[K] − ω2[M]

∣∣
becomes singular. In other words, there exists n number of solu-
tions, (ω2

1, ω2
2, . . . ω2

n), which satisfy the following equation:∣∣[K] − �[M]
∣∣{Z} = {0} (21)

where � = ω2 is the Eigen value of the system.
From a grid sensitivity study, a 10 × 10 element mesh is found

to provide reasonable convergence and is utilized for all simula-
tions presented in this work. The lowest three natural frequencies

are calculated and presented in Table 1. Based on this convergence
study, doubling the mesh density would only result in a 0.2% dif-
ference in the calculated first natural frequencies. Therefore, the
mesh density employed in this work is sufficient. A schematic of
the discretized PEMFC is shown in Fig. 1.
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Table 1
Comparison of natural frequencies (Hz) of a PEMFC for different element meshes.

Mode number 5 × 5-mesh 6 × 6-mesh 8 × 8-mesh 10 × 10-mesh 12 × 12-mesh 15 × 15-mesh

First mode 2328.80 2318.10 2310.70 2308.54 2307.73 2307.36
Second mode 4430.50 4386.80 4356.80 4450.88 4340.08 4344.08
Third mode 6064.00 6009.20 5966.70 5965.83 5956.67 5954.95
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Fig. 2. Normal mode shapes for a PEMFC considered as a Mindlin’s composite plate
(a) first mode, (b) second mode, and (c) third mode.
ig. 1. A schematic of the discretized mesh for the PEMFC (a) top view and (b)
hree-dimensional view.

. Parametric study

A parametric study is performed to investigate the mechanical
nd geometrical property effects on the vibration characteristics
f a PEMFC. The thickness, Young’s modulus, and density for each
omponent layer are increased independently in increments of 5%
o a maximum of 25% of the base case value, and the impact on the
atural frequency of the first mode is determined. Mechanical and
eometrical properties for the base case simulation are obtained
rom [21] and are listed in Table 2.

The mode shapes for this base case are shown in Fig. 2, which
rovides insight into the maximum displacement exhibited as well
s the stresses experienced by the material.

.1. Influence of material thickness

Fig. 3 illustrates the impact of independently increasing the
hickness of the PEMFC components on the lowest natural fre-
uency. 5% increments of the thickness in the bi-polar plate, GDE,
nd membrane result in increases of thickness on the order of 10−1,
0−2 and 10−3, respectively. The dominating effect of the bipolar
late thickness is exacerbated by the t3

k
term in the material prop-

rty matrix (Eqs. (6a–e), (9) and (14)). Therefore, increasing the
hickness of the GDEs and membrane result in negligible changes
o the stiffness and mass matrices and negligible increases to the
owest natural frequency (less than 1%). However, increases to the

hickness of the bi-polar plates result in a significant linear increase
n the lowest natural frequency, with an increase of approximately
7% when the thickness of the plates increases by 25%.

Fig. 3. Effect of independently varying component thickness on the first natural
frequency.
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Table 2
Mechanical and physical properties of the PEMFC for the base case simulation [21].

Young’s modulus (GPa) Poisson’s ratio Density (kg m−3) Thickness (mm) Length (mm) Width (mm)

Bi-polar plate 10 0.25 1800
GDE 10 0.25 400
Membrane 0.197 0.25 2000
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ig. 4. Effect of independently varying Young’s modulus on the first natural fre-
uency.

.2. Influence of Young’s modulus

The effect of independently increasing the Young’s modulus for
he bi-polar plates, GDEs and membrane on the lowest natural fre-
uency is shown in Fig. 4. Variations in the Young’s modulus of
he bi-polar plates and the GDEs both have the same impact on
he natural frequency of the material, with increases resulting in
linear increase to the natural frequency. With a 25% increase in

he Young’s modulus, the natural frequency increases by approxi-
ately 12%. On the other hand, the natural frequency is not affected

y increasing the Young’s modulus of the membrane since its thick-
ess is significantly smaller than the other two layers.

.3. Influence of material density

Fig. 5 illustrates the effect of independently increasing the den-

ity of the bi-polar plates, GDEs and membrane on the lowest
atural frequency. The combination of the order of magnitude
f density and thickness will be the determinant factors in this
ehaviour. Since the densities of the bi-polar plate and mem-
rane are almost 4.5 times greater than the GDE, and the thickness

ig. 5. Effect of independently varying the component density on first natural fre-
uency.
12.8 200 200
0.28 200 200
0.05 200 200

of the GDE and membrane are much less than the thickness of
the bipolar plate, increasing the density for the GDEs and mem-
brane do not result in any significant changes to the lowest
natural frequency. On the other hand, increasing the density of
the bi-polar plates results in a strong linear dependence of the
lowest natural frequency. Increasing the density by 25% results
in a decrease of the lowest natural frequency by approximately
11%. The effects of this parametric study have also been per-
formed on the 2nd and 3rd modes, which resulted in similar
trends.

5. Conclusions

A three-dimensional finite element model for the PEMFC mod-
elled as a laminated composite structure using Mindlin’s plate
theory is presented. The model is employed to characterize the
vibration behaviour of the PEMFC modelled with the membrane,
GDEs, and bi-polar plates considered as composite material plies.
A base case simulation is performed, and the mode shapes for the
first three modes are presented.

A parametric study is performed to investigate the effect of inde-
pendently increasing the thickness, Young’s modulus, and density
of the bi-polar plates, GDEs and membrane on the lowest natu-
ral frequency. It is found that increases in the GDE and membrane
thickness have little effect, while increases in the bi-polar plate
thickness has the most dominant effect on the natural frequency of
the entire study. To a lesser degree, increasing the Young’s mod-
ulus of the bi-polar plates and GDEs and increasing the density
of the bi-polar plate also have a significant effect on the lowest
natural frequency. Increasing the Young’s modulus of the bi-polar
plates and GDEs result in a linear increase in the natural frequency,
while increasing the density of the bi-polar plates results in a linear
decrease in the natural frequency. These results provide insight into
how the natural frequencies of the PEMFC may be tuned to avoid
high amplitude vibrations by modifying the material and geometric
properties of individual components.

The magnitude of the natural frequencies for this single PEMFC
have been found to be out of the range of frequencies (1–25 Hz)
encountered in common transportation and stationary applica-
tions [1–3]. Future work includes the representation of the PEMFC
as separate layers pressed together, so that the interfacial effects
between layers can be investigated. In this investigation, one sin-
gle cell is investigated to provide insight into the dominance of the
component layers. However, practical applications require fuel cell
stacks to provide realistic power levels. Since free vibrations that
coincide with the natural frequency will result in high amplitude
resonance vibrations, further investigations are required to deter-
mine whether the fuel cell stack will experience failure modes due
to these application-based vibrations. Furthermore, in these practi-
cal applications, fuel cells will be assembled under compression, so
our future investigations will include multiple PEMFC cells assem-
bled together to form a fuel cell stack, which will provide the proper

context in which to investigate vibration-resistant material prop-
erties and stack geometry. Furthermore, the absence of flow fields
in the bi-polar plate structure may also affect the results presented
here; therefore the flow field will also be included in our future
work.
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